Adaptive collective foraging in groups with conflicting nutritional needs.
نویسندگان
چکیده
Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms.
منابع مشابه
Genetic bases of collective decisions in Drosophila
Fruit flies (Drosophila melanogaster) hatch and feed collectively in a single host fruit during their entire larval development. Larvae exhibit two distinct foraging strategies attributed to variations in a single polymorphic foraging gene: the 'rovers' (forR/R) cover larger distances and are more likely to leave a food patch, whereas the 'sitters' (forR/s) cover smaller distances and stay long...
متن کاملIntermittent collective dynamics emerge from conflicting imperatives in sheep herds.
Among the many fascinating examples of collective behavior exhibited by animal groups, some species are known to alternate slow group dispersion in space with rapid aggregation phenomena induced by a sudden behavioral shift at the individual level. We study this phenomenon quantitatively in large groups of grazing Merino sheep under controlled experimental conditions. Our analysis reveals stron...
متن کاملHow Group Size Affects Vigilance Dynamics and Time Allocation Patterns: The Key Role of Imitation and Tempo
In the context of social foraging, predator detection has been the subject of numerous studies, which acknowledge the adaptive response of the individual to the trade-off between feeding and vigilance. Typically, animals gain energy by increasing their feeding time and decreasing their vigilance effort with increasing group size, without increasing their risk of predation ('group size effect')....
متن کاملAdaptive Control in Swarm Robotic Systems
Inspired by the collective behavior observed in natural insects, swarm robotics is a new approach in designing control algorithms for a large group of robots performing a certain task. In such robotic systems, an individual robot with only limited capabilities in terms of sensing, computation, and communication can adapt its own behavior so that a desired collective behavior emerges from the lo...
متن کاملExploring the evolution of a trade-off between vigilance and foraging in group-living organisms
Even though grouping behaviour has been actively studied for over a century, the relative importance of the numerous proposed fitness benefits of grouping remain unclear. We use a digital model of evolving prey under simulated predation to directly explore the evolution of gregarious foraging behaviour according to one such benefit, the 'many eyes' hypothesis. According to this hypothesis, coll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Royal Society open science
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2016